A Novel Snf2 Protein Maintains trans-Generational Regulatory States Established by Paramutation in Maize
نویسندگان
چکیده
Paramutations represent heritable epigenetic alterations that cause departures from Mendelian inheritance. While the mechanism responsible is largely unknown, recent results in both mouse and maize suggest paramutations are correlated with RNA molecules capable of affecting changes in gene expression patterns. In maize, multiple required to maintain repression (rmr) loci stabilize these paramutant states. Here we show rmr1 encodes a novel Snf2 protein that affects both small RNA accumulation and cytosine methylation of a proximal transposon fragment at the Pl1-Rhoades allele. However, these cytosine methylation differences do not define the various epigenetic states associated with paramutations. Pedigree analyses also show RMR1 does not mediate the allelic interactions that typically establish paramutations. Strikingly, our mutant analyses show that Pl1-Rhoades RNA transcript levels are altered independently of transcription rates, implicating a post-transcriptional level of RMR1 action. These results suggest the RNA component of maize paramutation maintains small heterochromatic-like domains that can affect, via the activity of a Snf2 protein, the stability of nascent transcripts from adjacent genes by way of a cotranscriptional repression process. These findings highlight a mechanism by which alleles of endogenous loci can acquire novel expression patterns that are meiotically transmissible.
منابع مشابه
Paramutation: a process for acquiring trans-generational regulatory states.
Basic tenets of Mendelian inheritance are violated by paramutations in which trans-homolog interactions lead to heritable changes in gene regulation and phenotype. First described in plants, similar behaviors have now been noted in diverse eukaryotes. Genetic and molecular studies of paramutations occurring in maize indicate that components of a small interfering RNA (siRNA) biogenesis pathway ...
متن کاملFrom Paramutation to Paradigm
Classical genetic studies aim to understand how genes determine biological processes, physical characteristics, behaviour, and disease by identifying heritable variations in DNA sequence that associate with specific phenotypes. However, organisms ranging from plants to mammals also possess some characteristics that can be inherited in the absence of any causal genetic variant [1,2]. Examples of...
متن کاملThe regulatory regions required for B' paramutation and expression are located far upstream of the maize b1 transcribed sequences.
Paramutation is an interaction between alleles that leads to a heritable change in the expression of one allele. In B'/B-I plants, B-I (high transcription) always changes to B' (low transcription). The new B' allele retains the low expression state in the next generation and paramutates B-I at a frequency of 100%. Comparisons of the structure and expression of B' with that of a closely related ...
متن کاملRmr6 maintains meiotic inheritance of paramutant states in Zea mays.
Paramutation generates heritable changes affecting regulation of specific alleles found at several Zea mays (maize) loci that encode transcriptional regulators of anthocyanin biosynthetic genes. Although the direction and extent of paramutation is influenced by poorly understood allelic interactions occurring in diploid sporophytes, two required to maintain repression loci (rmr1 and rmr2), as w...
متن کاملSpecific Tandem Repeats Are Sufficient for Paramutation-Induced Trans-Generational Silencing
Paramutation is a well-studied epigenetic phenomenon in which trans communication between two different alleles leads to meiotically heritable transcriptional silencing of one of the alleles. Paramutation at the b1 locus involves RNA-mediated transcriptional silencing and requires specific tandem repeats that generate siRNAs. This study addressed three important questions: 1) are the tandem rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007